The Data Access Portal has information in 3 columns. An outline of the content in these columns is provided above. When first entering the search interface, all potential datasets are listed. Datasets are indicated in the map and results tabulation elements which are located in the middle column. The order of results can be modified using the "Sort by" option in the left column. On top of this column is normally relevant guidance information to user presented as collapsible elements.
If the user want to refine the search, this can be done by constraining the bounding box search. This is done in the map - the listing of datasets is automatically updated. Date constraints can be added in the left column. For these to take effect, the user has to push the button marked search. In the left column it is also possible to specific text elements to search for in the datasets. Again pushing the button marked "Search" is necessary for these to take action. Complex search patterns can be constructed using logical operators and phrases embedded in quotation marks. Logical operators include AND, OR and NOT. Remember to add space around operators. Text strings that are not quoted are trated as separate words and will match any of the words (i.e. assuming the OR operator). E.g. in order to find WMO synoptic weather station data from Verlegenhuken use the search phrase: [synop AND verlegenhuken]. Searches are case insensitive.
Other elements indicated in the left and right columns are facet searches, i.e. these are keywords that are found in the datasets and all datasets that contain these specific keywords in the appropriate metadata elements are listed together. Further refinement can be done using full text, date or bounding box constraints. Individuals, organisations and data centres involved in generating or curating the datasets are listed in the facets in the right column.
Collections
Collections allows the user to search in subsets of the existing catalogue. The collections are primarily data management projects that have been incorporated in the ADC catalogue after the project has ended. In this context the ADC is the long term access solution for these data. The collections currently served through ADC include (datasets may belong to multiple data collections):
ADC is the full collection of this service CC is the CryoClim collection
In order to search a specific data collection select that collection. If no data collection is selected all collections are searched.
AeN are data related to the Nansen Legacy project and are better explored through the SIOS Data Access Point using the collection defined there which is available through this URL.
SIOS, InfraNOR, SIOSCD, SIOSAP, SESS_* are collections related to SIOS. These are better explored through the SIOS Data Access Portal
Some cleaning is pending between InfraNOR and SIOSIN, for some of the SESS collections.
Citation of data and service
Always remember to cite data when used!
Citation information for individual datasets is often provided in the metadata. However, not all datasets have this information embedded in the discovery metadata. On a general basis a citation of a dataset include the same components as any other citation:
author,
title,
year of publication,
publisher (for data this is often the archive where it is housed),
edition or version,
access information (a URL or persistent identifier, e.g. DOI if provided)
The information required to properly cite a dataset is normally provided in the discovery metadata the datasets.
If you use data retrieved through this portal, please acknowledge the Norwegian Meteorological Institute/Arctic Data Centre.
Spatiotemporal variability in mortality and growth of fish larvae and zooplankton in the Lofoten-Barents Sea ecosystem, The Nansen Legacy (SVIM, NLEG)
Institutions: Institute of Marine Reseach - Norway, Norwegian Meteorological Institute, Norwegian Meteorological Institute, Norwegian Meteorological Institute
Last metadata update: 2021-11-22T19:35:45Z
Show more...
Abstract:
The SVIM archive contains results from an ocean and sea ice hindcast. The original version of the archive covered the period 1960-2011, and has later been extended on several occasions. The results are provided on a 4km polar stereographic grid projection, and the ocean model has a vertical resolution of 32 s layers. The focus is an adequate representation of the Atlantic influenced water masses within the Nordic Seas and the Barents Sea. Less emphasize has been put on the areas downstream of the Arctic bound Atlantic Water flow, i.e. the Arctic Ocean and the Greenland Sea. There were multiple aims for this product, including (1) process studies within physical oceanography, (2) representation of oceanographic conditions for other applications such as primary production models and individual-based models for zoo- and ichtyoplankton, (3) boundary values for smaller scale model studies. For ocean circulation the Regional Ocean Modeling System (ROMS; https://www.myroms.org/) was used (v.3.2 up to and including September 2018, v.3.5 thereafter). The sea-ice model used is similar to the module described in Budgell (Ocean Dyn. 2005). Boundary values for the ocean model were derived from the Simple Ocean Data Assimilation dataset (SODA v.2.1.6), while boundary values for the sea ice conditions were taken from a regional simulation (Sandø et al., JGR 2012). After 2008, the ocean boundaries were forced with monthly climatologies from 2000-2008, while for ice conditions after 2007, the 2000-2007 monthly climatologies were used. Tidal forcing was based on the global ocean tides model TPXO4. The quality of the model results for the original archive period were assessed by Lien et al. (2013; https://www.hi.no/resources/publikasjoner/fisken-og-havet/2013/fh_7-2013_swim_til_web.pdf).
Spatiotemporal variability in mortality and growth of fish larvae and zooplankton in the Lofoten-Barents Sea ecosystem, The Nansen Legacy (SVIM, NLEG)
Institutions: Institute of Marine Reseach - Norway, Norwegian Meteorological Institute, Norwegian Meteorological Institute, Norwegian Meteorological Institute
Last metadata update: 2021-11-22T19:35:45Z
Show more...
Abstract:
The SVIM archive contains results from an ocean and sea ice hindcast. The original version of the archive covered the period 1960-2011, and has later been extended on several occasions. The results are provided on a 4km polar stereographic grid projection, and the ocean model has a vertical resolution of 32 s layers. The focus is an adequate representation of the Atlantic influenced water masses within the Nordic Seas and the Barents Sea. Less emphasize has been put on the areas downstream of the Arctic bound Atlantic Water flow, i.e. the Arctic Ocean and the Greenland Sea. There were multiple aims for this product, including (1) process studies within physical oceanography, (2) representation of oceanographic conditions for other applications such as primary production models and individual-based models for zoo- and ichtyoplankton, (3) boundary values for smaller scale model studies. For ocean circulation the Regional Ocean Modeling System (ROMS; https://www.myroms.org/) was used (v.3.2 up to and including September 2018, v.3.5 thereafter). The sea-ice model used is similar to the module described in Budgell (Ocean Dyn. 2005). Boundary values for the ocean model were derived from the Simple Ocean Data Assimilation dataset (SODA v.2.1.6), while boundary values for the sea ice conditions were taken from a regional simulation (Sandø et al., JGR 2012). After 2008, the ocean boundaries were forced with monthly climatologies from 2000-2008, while for ice conditions after 2007, the 2000-2007 monthly climatologies were used. Tidal forcing was based on the global ocean tides model TPXO4. The quality of the model results for the original archive period were assessed by Lien et al. (2013; https://www.hi.no/resources/publikasjoner/fisken-og-havet/2013/fh_7-2013_swim_til_web.pdf).
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios.The CMIP5 model selection is based on their ability to reconstruct the present (1971–2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized.
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios.The CMIP5 model selection is based on their ability to reconstruct the present (1971–2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized.
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios.The CMIP5 model selection is based on their ability to reconstruct the present (1971–2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized.
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios.The CMIP5 model selection is based on their ability to reconstruct the present (1971–2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized.
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios.The CMIP5 model selection is based on their ability to reconstruct the present (1971–2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized.
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios.The CMIP5 model selection is based on their ability to reconstruct the present (1971–2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized.
These data are schematized with map symbols and others based on vector data of topographic map. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data).
Data scanned directly from paper maps. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data). Map compilation from air photographs of Jan. 6, 1981, controlled by triangulation points established by Japan Antarctic Research Expeditions, 1977, 1979 and 1984.
Geological map data of Antarctica held by the National Institute of Polar Research and the Geospatial Information Authority of Japan. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data).
Geological map data of Antarctica held by the National Institute of Polar Research and the Geospatial Information Authority of Japan. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data).
Data scanned directly from paper maps. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data). Map compilation from air photographs of Jan. 6, 1981, controlled by triangulation points established by Japan Antarctic Research Expeditions, 1977, 1979 and 1980.
These data are schematized with map symbols and others based on vector data of topographic map. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data).
These data are schematized with map symbols and others based on vector data of topographic map. There are two types of data available: (data1: geometrically corrected data) and (data2: raw image data).