The Data Access Portal has information in 3 columns. An outline of the content in these columns is provided above. When first entering the search interface, all potential datasets are listed. Datasets are indicated in the map and results tabulation elements which are located in the middle column. The order of results can be modified using the "Sort by" option in the left column. On top of this column is normally relevant guidance information to user presented as collapsible elements.
If the user want to refine the search, this can be done by constraining the bounding box search. This is done in the map - the listing of datasets is automatically updated. Date constraints can be added in the left column. For these to take effect, the user has to push the button marked search. In the left column it is also possible to specific text elements to search for in the datasets. Again pushing the button marked "Search" is necessary for these to take action. Complex search patterns can be constructed using logical operators and phrases embedded in quotation marks. Logical operators include AND, OR and NOT. Remember to add space around operators. Text strings that are not quoted are trated as separate words and will match any of the words (i.e. assuming the OR operator). E.g. in order to find WMO synoptic weather station data from Verlegenhuken use the search phrase: [synop AND verlegenhuken]. Searches are case insensitive.
Other elements indicated in the left and right columns are facet searches, i.e. these are keywords that are found in the datasets and all datasets that contain these specific keywords in the appropriate metadata elements are listed together. Further refinement can be done using full text, date or bounding box constraints. Individuals, organisations and data centres involved in generating or curating the datasets are listed in the facets in the right column.
Collections
Collections allows the user to search in subsets of the existing catalogue. The collections are primarily data management projects that have been incorporated in the ADC catalogue after the project has ended. In this context the ADC is the long term access solution for these data. The collections currently served through ADC include (datasets may belong to multiple data collections):
ADC is the full collection of this service CC is the CryoClim collection
In order to search a specific data collection select that collection. If no data collection is selected all collections are searched.
AeN are data related to the Nansen Legacy project and are better explored through the SIOS Data Access Point using the collection defined there which is available through this URL.
SIOS, InfraNOR, SIOSCD, SIOSAP, SESS_* are collections related to SIOS. These are better explored through the SIOS Data Access Portal
Some cleaning is pending between InfraNOR and SIOSIN, for some of the SESS collections.
Citation of data and service
Always remember to cite data when used!
Citation information for individual datasets is often provided in the metadata. However, not all datasets have this information embedded in the discovery metadata. On a general basis a citation of a dataset include the same components as any other citation:
author,
title,
year of publication,
publisher (for data this is often the archive where it is housed),
edition or version,
access information (a URL or persistent identifier, e.g. DOI if provided)
The information required to properly cite a dataset is normally provided in the discovery metadata the datasets.
If you use data retrieved through this portal, please acknowledge the Norwegian Meteorological Institute/Arctic Data Centre.
Institutions: The University Centre in Svalbard, The University Centre in Svalbard, The University Centre in Svalbard, The University Centre in Svalbard, Norwegian Meteorological Institute / Arctic Data Centre
The file contains time series of meteorological near-surface parameters measured on a temporary meteorological mast on the southern side of the coast of Adventdalen, Svalbard, from July to August 2022: Both temperature, humidity, wind speed, wind direction were measured at two levels.
Institutions: The University Centre in Svalbard, The University Centre in Svalbard, University of Bergen, University of Bergen, The University Centre in Svalbard, Norwegian Meteorological Institute / Arctic Data Centre
A scanning Doppler Lidar was placed in Adventdalen (Central Spitsbergen, Svalbard, Norway) close to the permanent weather mast SN99870. The Lidar measured between 4 July and 23 August 2022 with different scanning patterns in an hourly cycle. The cycle consisted of three Plan Position Indicator (PPI) scans at 1, 5 and 10 degree from xx:00 to xx:10, Range Height Indicator (RHI) scans alternating between up-valley and down-valley direction from xx:10 to xx:50, Doppler-Beam-Swinging (DBS) technique from xx:50 to xy:00. The radial resolution was 10 m with overlapping range gates of 50 m. Short periods of power cuts were encountered. Frequently there were conditions with little backscatter and low carrier-to-noise ratio, especially in light down-valley winds.
Geophone and Hydrophone deployments in Svalbard 2022, to measure the vibrations in sea ice following the appearance of cracks. For more information, see https://github.com/jvoermans/Geophone_Logger .
This Near Real-Time (NRT) data set corresponds to the standard SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture (SPL2SMP) product. The data provide estimates of global land surface conditions measured by the Soil Moisture Active Passive (SMAP) passive microwave radiometer, the SMAP L-band radiometer. These Near Real-Time data are available within three hours of satellite observation. The data are created using the latest available ancillary data and spacecraft and antenna attitude data to reduce latency. The SMAP satellite orbits Earth every two to three days, providing half-orbit, ascending and descending, coverage from 86.4°S to 86.4°N in swaths 1000 km across. Data are stored for approximately two to three weeks. Thus, at any given time, users have access to at least fourteen consecutive days of Near Real-Time data through the NSIDC DAAC. Users deciding between the NRT and standard SMAP products should consider the immediacy of their needs versus the quality of the data required. Near real-time data are provided for operational needs whereas standard products meet the quality needs of scientific research. If latency is not a primary concern, users are encouraged to use the standard science product SPL2SMP (<a href="https://doi.org/10.5067/LPJ8F0TAK6E0">https://doi.org/10.5067/LPJ8F0TAK6E0</a>).
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
These lidar measurements were collected in April and August 2022 in the vicinity of Petersham, MA during the SMAPVEX19-22 campaign. This location was chosen due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The two acquisition periods were selected to characterize differences during "leaf-off” and "leaf-on" conditions.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
ATL09QL is the quick look version of ATL09. Once final ATL09 files are available the corresponding ATL09QL files will be removed.
ATL09 contains calibrated, attenuated backscatter profiles, layer integrated attenuated backscatter, and other parameters including cloud layer height and atmospheric characteristics obtained from the data. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
These digital elevation model (DEM) data consist of ground surface elevations derived from source lidar measurements collected in April and August 2022 in the vicinity of Petersham, MA during the SMAPVEX19-22 campaign. This location was chosen due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The two acquisition periods occurred to characterize differences during "leaf-off” and "leaf-on" conditions.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
These digital elevation model (DEM) data consist of ground surface elevations derived from source lidar measurements collected in April and August 2022 in the vicinity of Millbrook, NY during the SMAPVEX19-22 campaign. This location was chosen due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The two acquisition periods occurred to characterize differences during "leaf-off" and "leaf-on" conditions.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
ATL13QL is the quick look version of ATL13. Once final ATL13 files are available the corresponding ATL13QL files will be removed. ATL13 contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7 km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit).
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
These lidar measurements were collected in April and August 2022 in the vicinity of Millbrook, NY during the SMAPVEX19-22 campaign. This location was chosen due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The two acquisition periods were selected to characterize differences during "leaf-off" and "leaf-on" conditions.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
ATL10QL is the quick look version of ATL10. Once final ATL10 files are available the corresponding ATL10QL files will be removed.
ATL10 contains estimates of sea ice freeboard, calculated using three different approaches. Sea ice leads used to establish the reference sea surface and descriptive statistics used in the height estimates are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
This Near Real-Time (NRT) data set corresponds to the standard SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures (SPL1BTB) product. The data provide calibrated estimates of time-ordered geolocated brightness temperature data measured by the Soil Moisture Active Passive (SMAP) passive microwave radiometer, the SMAP L-band radiometer. These Near Real-Time data are available within three hours of satellite observation. The data are created using the latest available ancillary data and spacecraft and antenna attitude data to reduce latency. The SMAP satellite orbits Earth every two to three days, providing half-orbit, ascending and descending, coverage from 86.4°S to 86.4°N in swaths 1000 km across. Data are stored for approximately two to three weeks. Thus, at any given time, users have access to at least fourteen consecutive days of Near Real-Time data through the NSIDC DAAC. Users deciding between the NRT and standard SMAP products should consider the immediacy of their needs versus the quality of the data required. Near real-time data are provided for operational needs whereas standard products meet the quality needs of scientific research. If latency is not a primary concern, users are encouraged to use the standard science product, SPL1BTB (<a href="https://doi.org/10.5067/ZHHBN1KQLI20">https://doi.org/10.5067/ZHHBN1KQLI20</a>).
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
ATL08QL is the quick look version of ATL08. Once final ATL08 files are available the corresponding ATL08QL files will be removed.
ATL08 contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 signal photons. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
These digital surface model (DSM) data consist of surface elevations derived from source lidar measurements collected in August 2022 in the vicinity of Millbrook, NY during the SMAPVEX19-22 campaign. The location was selected due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The August collection period was selected to characterize ‘leaf-on’ conditions. DSM data represents the highest elevation of features on the Earth’s surface, which may include bare-earth, vegetation, and human-made objects.
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).
Access: These data are freely, openly, and fully accessible, provided that you are logged into your NASA Earthdata profile (https://urs.earthdata.nasa.gov/).